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Synthesis of optically pure 2,3,4-trisubstituted tetrahydrofurans is described employing a two-step
Michael-Evans aldol cyclization strategy. The approach is successfully applied for the total synthesis of
furano lignan natural product (+)-magnolone.
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Devising newer protocols for synthesizing substituted tetra-
hydrofurans, in general, has been the focus of synthetic organic
chemists for some time owing to the presence of this core unit in
many natural products1 possessing diverse array of biological
activities.2 In particular, construction of stereo-defined optically
pure 2,3,4-trisubstituted tetrahydrofurans, representing core
structure of furano lignan class of natural products,3 has been an
attractive target. It has generally been noticed that the natural
products belonging to this class display ‘2,3-trans,3,4-trans’ stereo-
chemistry4 (e.g., sesaminone 1, magnolone 2) however, other ste-
reochemical arrangements such as ‘2,3-cis,3,4-trans’5 (e.g.,
sylvone 3) and ‘2,3-trans, 3,4-cis’ (e.g., 2,6-diaryl, 3,7-dioxabicyclo
[3,3,0] octane lignans or furofuran lignans 4)6 are also known
(Fig. 1).

Recent review by Wolfe et al.7 broadly covers most of the trans-
formations related to the synthesis of tetrahydrofurans in optically
pure form, however, very few methods are known which could di-
rectly be used for the total synthesis of tetrahydrofuran lignans. It
appears that there are only two suitable methods to synthesize fur-
ano lignans which involve either the Lewis acid-mediated coupling
of cyclic allyl siloxanes with aldehydes8 or [1,3]-rearrangement of
1,3-dioxepins.9 Therefore, developing a simple, efficient and ste-
reo-divergent protocol to access 2,3,4-trisubstituted tetrahydrofu-
ll rights reserved.

: +91 20 25902628.
rans, applicable for the synthesis of furano lignan natural products
appears to be demanding.

In this context, we envisioned that the conjugate addition to 5
followed by aldol and intramolecular cyclization sequence, as
shown in Scheme 1, may lead to stereoselective construction of tri-
substituted tetrahydrofuran skeleton efficiently. Furthermore, this
strategy was envisaged to be attractive as the desired stereochem-
istry at various centres of tetrahydrofuran could easily be tuned at
will. For illustration, the stereochemistry of R group at C-4 will de-
Ar1, Ar2 = 3, 4-methylenedioxy phenyl
or 3, 4-dimethoxy phenylSylvone

3

Figure 1. Structures of furo and furofuran lignans.
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Scheme 3. Michael addition reaction on 5.
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Scheme 1. Synthetic strategy for substituted tetrahydrofurans.
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pend upon the Evans chiral auxiliary whereas the stereochemistry
at C-2 and C-3 centres of THF ring could easily be controlled
employing either Evans syn- or anti-aldol reaction protocols.10

In this Letter, we disclose our preliminary and successful results
of a two-step strategy to construct stereo-defined 2,3,4-trisubsti-
tuted tetrahydrofurans employing Michael-Evans aldol cyclization
sequence.

We initiated the proposed synthesis of 2,3,4-trisubstituted tetra-
hydrofurans by carrying out first one-pot Michael-aldol-cyclization
sequence starting from 5 (Scheme 2). Compound 5 was easily pre-
pared in 85% yield by Horner–Wadsworth–Emmons reaction11 of
phosphonate12 6 with 2-(tert-butyldimethylsiloxy) acetaldehyde13

in the presence of K2CO3. Compound 5 upon treatment with a solu-
tion of alkyl magnesium bromide (1.2 equiv) and CuI (1.5 equiv) in
THF (�78 �C to rt) followed by sequential addition of p-anisaldehyde
(1.2 equiv) and TiCl4 (2 equiv) at�78 �C gave corresponding insepa-
rable mixture of diastereomeric tetrahydrofurans.

This observation led us to examine the diastereomeric purity of
the Michael-aldol reaction product 7, which was found to be a mix-
ture (dr 7:3, determined by 1H NMR). Therefore, we decided to
adopt two-step protocol from 5 to obtain substituted THFs. Mi-
chael addition (Scheme 3) of various organocuprates (prepared
by mixing corresponding Grignard reagent (1.2 equiv) and dry
CuI (1.5 equiv) in THF at �78 �C) to 5 gave corresponding conjugate
adducts 8a–c with very high diastereomeric purity14,15 (see
Scheme 3), determined by HPLC (mobile phase: MeOH/H2O
(90:10), flow rate: 1.0/min, column: Grace Denali RP-18 (250 �
4.6 mm)) analysis. Pure diastereomers were easily separated by
column chromatography (Silica Gel 100–200, eluent: ethyl ace-
tate/pet ether (5:95)).

Reaction of diastereomerically pure 8c with TiCl4 (2.5 equiv),
DIPEA (3 equiv) and p-anisaldehyde (1.2 equiv) in DCM at �78 �C
(Evans syn-aldol reaction condition) (Scheme 4) followed by usual
work-up and purification gave, to our delight, diastereomerically
pure 2,3-trans, 3,4-trans trisubstituted tetrahydrofuran 9c in 67%
yield.16
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Scheme 2. Initial strategy for tetrahydrofurans.
The relative stereochemistry of the substituents in 9c was as-
signed by detailed 2D NMR spectroscopy (COSY and NOESY) and fi-
nally confirmed by single crystal X-ray analysis (Fig. 2).17 The
inverted stereochemistry at C-2 benzylic carbon suggests that tet-
rahydrofuran ring formation involved thermodynamically fa-
voured intramolecular SN

1 type nucleophilic substitution at
benzylic position. In order to study the generality of this reaction,
various reactions combining different aldehydes and conjugate ad-
ducts (8a–c) were carried out and the results are presented in
Scheme 4.

With these successful results, we decided to apply this protocol
for the total synthesis of tetrahydrofuran lignan natural product
(+)-magnolone18 (2). Compound 2 is a trisubstituted 70-oxo tetra-
hydrofuran lignan isolated from the leaves of magnolia coco. and
has been used in the treatment of impaired liver function and
cancer.

Yamauchi and Nakato19 have synthesized this molecule
employing erythro selective aldol condensation followed by a ster-
eoselective intramolecular SN

1 cyclization in the presence of acid
catalyst starting from (S)-benzyl-3-pent-4-enoyloxazolidin-2-one,
and also assigned the absolute configuration as (7S,8R,8’S).

We began the synthesis of 2 starting from tetrahydrofuran
derivative 9d. LiBH4 reduction of 9d in THF at 0 �C followed by pro-
tection of primary alcohol moiety as –OTBS provided 10 in 98%
yield. Dihydroxylation of 10 using OsO4 (cat.), trimethyl amine
N-oxide (TMO, 1.2 equiv), in THF/t-BuOH/H2O (2:4:1) gave corre-
sponding diol which on cleavage using NaIO4 (1.2 equiv) in THF/
H2O (2:1) provided corresponding aldehyde 11 in 90% yield. Reac-
tion of 11 with 4-lithio-1,2-dimethoxy benzene (1.2 equiv) in THF
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at �78 �C gave 12 in 70% yield. Oxidation of 12 using IBX (2 equiv)
in refluxing ethyl acetate followed by TBS deprotection (TBAF,
1.2 equiv/THF) gave 2 in 44% overall yield starting from 9d. The
spectral data of 2 (½a�29:4

D +23.5 (c 0.15, CHCl3), Lit.18 ½a�20
D +31 (c

0.2, CHCl3)) were found to be in excellent agreement with those
of literature values reported for (+)-magnolone (Scheme 5).

In conclusion, we have developed a concise and stereo-diver-
gent method for the synthesis of optically pure 2,3,4-trisubstituted
tetrahydrofurans. The significance of this strategy is successfully
demonstrated by applying for the total synthesis of furo lignan
(+)-magnolone. Total synthesis of other similar furo lignans is in
progress.
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